会议论文详细信息
Emergent Quantum Mechanics 2015 | |
Weak Values, the Reconstruction Problem, and the Uncertainty Principle | |
De Gosson, Charlyne^1 ; De Gosson, Maurice^1 | |
Universität Wien, NuHAG, Fakultät für Mathematik, Wien | |
A-1090, Austria^1 | |
关键词: Ancillary state; Hardy uncertainty principle; Reconstruction problems; Uncertainty principles; Von Neumann measurement; Weak measurements; Weak values; Wigner transforms; | |
Others : https://iopscience.iop.org/article/10.1088/1742-6596/701/1/012011/pdf DOI : 10.1088/1742-6596/701/1/012011 |
|
来源: IOP | |
【 摘 要 】
Closely associated with the notion of weak value is the problem of reconstructing the post-selected state: this is the so-called reconstruction problem. We show that the reconstruction problem can be solved by inversion of the cross-Wigner transform, using an ancillary state. We thereafter show, using the multidimensional Hardy uncertainty principle, that maximally concentrated cross-Wigner transforms corresponds to the case where a weak measurement reduces to an ordinary von Neumann measurement.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
Weak Values, the Reconstruction Problem, and the Uncertainty Principle | 626KB | download |