会议论文详细信息
International Meeting on High-Dimensional Data-Driven Science 2015
Graph structure modeling for multi-neuronal spike data
Akaho, Shotaro^1 ; Higuchi, Sho^2 ; Iwasaki, Taishi^3 ; Hino, Hideitsu^4 ; Tatsuno, Masami^5 ; Murata, Noboru^3
National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Ibaraki, Tsukuba
305-8568, Japan^1
NTT DATA Corporation, 3-9 Toyosu 3-chome, Koto-ku, Tokyo
135-8671, Japan^2
Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo
169-8555, Japan^3
University of Tsukuba, 1-1-1 Tennodai, Ibaraki, Tsukuba
305-8577, Japan^4
University of Lethbridge, Lethbridge
AB
T1K3M4, Canada^5
关键词: Estimation algorithm;    Graph structures;    Large datasets;    Matrix inversions;    Spike train;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/699/1/012012/pdf
DOI  :  10.1088/1742-6596/699/1/012012
来源: IOP
PDF
【 摘 要 】

We propose a method to extract connectivity between neurons for extracellularly recorded multiple spike trains. The method removes pseudo-correlation caused by propagation of information along an indirect pathway, and is also robust against the influence from unobserved neurons. The estimation algorithm consists of iterations of a simple matrix inversion, which is scalable to large data sets. The performance is examined by synthetic spike data.

【 预 览 】
附件列表
Files Size Format View
Graph structure modeling for multi-neuronal spike data 955KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:27次