会议论文详细信息
International Meeting on High-Dimensional Data-Driven Science 2015
Extracting nonlinear spatiotemporal dynamics in active dendrites using data-driven statistical approach
Omori, Toshiaki^1 ; Hukushima, Koji^2,3
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Hyogo, Kobe
657-8501, Japan^1
Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo
153-8902, Japan^2
Center for Materials Research by Information Integration, National Institute for Materials Science, 1-2-1 Sengen, Ibaraki, Tsukuba
305-0047, Japan^3
关键词: Data driven;    Membrane dynamics;    Probabilistic information;    Reaction diffusion equations;    Sequential Monte Carlo methods;    Spatio-temporal dynamics;    Statistical approach;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/699/1/012011/pdf
DOI  :  10.1088/1742-6596/699/1/012011
来源: IOP
PDF
【 摘 要 】

We propose a data-driven statistical method for extracting nonlinear spatiotemporal membrane dynamics of active dendrites. We employ a framework of probabilistic information processing to extract the nonlinear spatiotemporal dynamics obeying the reaction-diffusion equation from partially observable data. By employing sequential Monte-Carlo method and other statistical methods, membrane dynamics and their underlying electrical properties are simultaneously estimated in the proposed method. Using the proposed method, we show that nonlinear spatiotemporal dynamics in active dendrites can be extracted from partially observable data.

【 预 览 】
附件列表
Files Size Format View
Extracting nonlinear spatiotemporal dynamics in active dendrites using data-driven statistical approach 1010KB PDF download
  文献评价指标  
  下载次数:25次 浏览次数:27次