| 7th International Workshop DICE2014 Spacetime – Matter – Quantum Mechanics | |
| Classical and Quantum Stability of Branched Flow | |
| 物理学;力学 | |
| Liu, Bo^1,2,3 | |
| Department of Physics, Harvard University, Cambridge | |
| MA | |
| 02138, United States^1 | |
| Institute for Applied Computational Science, Harvard University, Cambridge | |
| MA | |
| 02138, United States^2 | |
| Center for Integrated Quantum Materials, Cambridge | |
| MA | |
| 02138, United States^3 | |
| 关键词: Chaotic nature; Classical dynamics; Electron trajectories; Random potentials; Small perturbations; Strong stability; Wave propagation in random media; | |
| Others : https://iopscience.iop.org/article/10.1088/1742-6596/626/1/012037/pdf DOI : 10.1088/1742-6596/626/1/012037 |
|
| 学科分类:力学,机械学 | |
| 来源: IOP | |
PDF
|
|
【 摘 要 】
Branched flow is a universal phenomenon of wave propagation in random media. From a classical point of view, branched flow is the overall pattern of classical electron trajectories moving in a potential with randomly placed weak scatterers. Individually, each electron trajectory is exponentially unstable to small perturbations due to the chaotic nature of the classical dynamics of electrons moving in a random potential. However, the overall pattern, branched flow, displays strong stability against large perturbations. In this paper, we discuss both the classical and quantum stability of branched flow against perturbations.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| Classical and Quantum Stability of Branched Flow | 6970KB |
PDF