会议论文详细信息
3Quantum: Algebra Geometry Information
Permutations of cubical arrays
物理学;数学
Wene, G.P.^1
Department of Mathematics, University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio
TX
78249-0697, United States^1
关键词: Division algebras;    Finite semifield;    Structure constants;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/532/1/012028/pdf
DOI  :  10.1088/1742-6596/532/1/012028
来源: IOP
PDF
【 摘 要 】

The structure constants of an algebra determine a cube called the cubical array associated with the algebra. The permuted indices of the cubical array associated with a finite semifield generate new division algebras. We do not not require that the algebra be finite and ask «Is it possible to choose a basis for the algebra such any permutation of the indices of the structure constants leaves the algebra unchanged?» What are the associated algebras? Author shows that the property «weakly quadratic» is invariant under all permutations of the indices of the corresponding cubical array and presents two algebras for which the cubical array is invariant under all permutations of the indices.

【 预 览 】
附件列表
Files Size Format View
Permutations of cubical arrays 747KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:29次