会议论文详细信息
3Quantum: Algebra Geometry Information
On quantum deformations of (anti-)de Sitter algebras in (2+1) dimensions
物理学;数学
Ballesteros, A.^1 ; Herranz, F.J.^1 ; Musso, F.^2
Departamento de Física, Universidad de Burgos, Burgos
09001, Spain^1
Dipartimento di Matematica e Fisica, Universitá Degli Studi di Roma Tre, Rome
00146, Italy^2
关键词: Algebras and groups;    Cosmological constants;    Non-commutative;    Quantum deformation;    Quantum structure;    Space isotropy;    Three parameters;    Two parameter;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/532/1/012002/pdf
DOI  :  10.1088/1742-6596/532/1/012002
来源: IOP
PDF
【 摘 要 】

Quantum deformations of (anti-)de Sitter (A)dS algebras in (2+1) dimensions are revisited, and several features of these quantum structures are reviewed. In particular, the classification problem of (2+1) (A)dS Lie bialgebras is presented and the associated noncommutative quantum (A)dS spaces are also analysed. Moreover, the flat limit (or vanishing cosmological constant) of all these structures leading to (2+1) quantum Poincare algebras and groups is simultaneously given by considering the cosmological constant as an explicit Lie algebra parameter in the (A)dS algebras. By making use of this classification, a three-parameter generalization of the K-deformation for the (2+1) (A)dS algebras and quantum spacetimes is given. Finally, the same problem is studied in (3+1) dimensions, where a two-parameter generalization of the κ-(A)dS deformation that preserves the space isotropy is found.

【 预 览 】
附件列表
Files Size Format View
On quantum deformations of (anti-)de Sitter algebras in (2+1) dimensions 830KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:20次