会议论文详细信息
20th International Conference on Computing in High Energy and Nuclear Physics
GooFit: A library for massively parallelising maximum-likelihood fits
物理学;计算机科学
Andreassen, R.^1 ; Meadows, B.T.^1 ; De Silva, M.^1 ; Sokoloff, M.D.^1 ; Tomko, K.^2
University of Cincinnati, Physics Department, ML0011, Cincinnati
OH
45221-0011, United States^1
Ohio Supercomputer Center, 1224 Kinnear Road, Columbus
OH
43212, United States^2
关键词: Large datasets;    Multi-core cpus;    Parallelisation;    Probability density functions (PDFs);    Real-world problem;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/513/5/052003/pdf
DOI  :  10.1088/1742-6596/513/5/052003
学科分类:计算机科学(综合)
来源: IOP
PDF
【 摘 要 】

Fitting complicated models to large datasets is a bottleneck of many analyses. We present GooFit, a library and tool for constructing arbitrarily-complex probability density functions (PDFs) to be evaluated on nVidia GPUs or on multicore CPUs using OpenMP. The massive parallelisation of dividing up event calculations between hundreds of processors can achieve speedups of factors 200-300 in real-world problems.

【 预 览 】
附件列表
Files Size Format View
GooFit: A library for massively parallelising maximum-likelihood fits 797KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:22次