8th International Symposium on Quantum Theory and Symmetries | |
Kravchuk oscillator revisited | |
Atakishiyeva, Mesuma K.^1 ; Atakishiyev, Natig M.^2 ; Wolf, Kurt Bernardo^3 | |
Facultad de Ciencias, Universidad Autónoma Del Estado de Morelos, Av. Universidad s/n, Cuernavaca, Morelos 62250, Mexico^1 | |
Instituto de Matemáticas, Unidad Cuernavaca, Universidad Nacional Autonoma de México, Av. Universidad s/n, Cuernavaca, Morelos 62250, Mexico^2 | |
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos 62250, Mexico^3 | |
关键词: Discrete variables; Harmonic oscillators; Irreducible representations; Low dimensional; Quantum modeling; Quantum models; Special functions; Stationary solutions; | |
Others : https://iopscience.iop.org/article/10.1088/1742-6596/512/1/012031/pdf DOI : 10.1088/1742-6596/512/1/012031 |
|
来源: IOP | |
![]() |
【 摘 要 】
The study of irreducible representations of Lie algebras and groups has traditionally considered their action on functions of a continuous manifold (e.g. the 'rotation' Lie algebra so(3) on functions on the sphere). Here we argue that functions of a discrete variable -Kravchuk functions- are on equal footing for that study in the case of so(3). They lead to a discrete quantum model of the harmonic oscillator, and offer a corresponding set of special function relations. The technique is applicable to other special function families of a discrete variable, which stem from low-dimensional Lie algebras and are stationary solutions for the corresponding discrete quantum models.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
Kravchuk oscillator revisited | 652KB | ![]() |