会议论文详细信息
Physics and Mathematics of Nonlinear Phenomena 2013
Resonant dispersive Benney and Broer-Kaup systems in 2+1 dimensions
Lee, Jyh-Hao^1 ; Pashaev, Oktay K.^2
Institute of Mathematics, Academia Sinica, Taipei, 10617, Taiwan^1
Department of Mathematics, Izmir Institute of Technology, Urla-Izmir, 35430, Turkey^2
关键词: Broer Kaup equation;    Broer-Kaup system;    Hydrodynamic equations;    Infinite system;    Integrable systems;    Quantum potentials;    Soliton interactions;    Soliton solutions;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/482/1/012026/pdf
DOI  :  10.1088/1742-6596/482/1/012026
来源: IOP
PDF
【 摘 要 】

We represent the Benney system of dispersionless hydrodynamic equations as NLS type infinite system of equations with quantum potential. We show that negative dispersive deformation of this system is an integrable system including vector generalization of Resonant NLS and 2+1 dimensional nonlocal Resonant NLS. We obtain bilinear form and soliton solutions in these systems and find the resonant character of soliton interaction. Equivalent vector Broer-Kaup system and non-local 2+1 dimensional nonlocal Broer-Kaup equation are constructed.

【 预 览 】
附件列表
Files Size Format View
Resonant dispersive Benney and Broer-Kaup systems in 2+1 dimensions 556KB PDF download
  文献评价指标  
  下载次数:32次 浏览次数:23次