会议论文详细信息
ELC International Meeting on Inference, Computation, and Spin Glasses
Sharp thresholds and the partition function
Coja-Oghlan, Amin^1 ; Reichman, Daniel^2
Goethe University, Mathematics Institute, 10 Robert Mayer St, Frankfurt 60325, Germany^1
Weizmann Institute, Rehovot, Israel^2
关键词: K-CNF formulas;    Partition functions;    Satisfiability;    Satisfying assignments;    Sharp threshold;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/473/1/012015/pdf
DOI  :  10.1088/1742-6596/473/1/012015
来源: IOP
PDF
【 摘 要 】

Let Φ be a random k-CNF formula over n variables with clauses and let Z(Φ) be the number of satisfying assignments. Assume that k is sufficiently large and that r ≤ (1 - ok(1))2kln(k)/k, where ok(1)denotes a certain function that tends to 0 as k gets large. We prove that in this case, Φ is satisfiable with probability 1 - O(1/n). Together with a recent result of Abbe and Montanari [arXiv:1006.3786], this implies that for such k,r the limit exists. The existence of this limit is related to the existence of a sharp threshold for satisfiability.

【 预 览 】
附件列表
Files Size Format View
Sharp thresholds and the partition function 399KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:6次