6th Vacuum and Surface Sciences Conference of Asia and Australia | |
Comparative analysis of mapping burned areas from landsat TM images | |
Mazher, A.^1 | |
Institute of Remote Sensing and Geographic Information System, Peking University, Yifu No.2 Building (New Geology Building), Beijing, China^1 | |
关键词: Classification accuracy; Comparative analysis; Comparative studies; Maximum likelihood classifiers; Multispectral images; One-class classifier; Support vector data description; Support vector machine (SVMs); | |
Others : https://iopscience.iop.org/article/10.1088/1742-6596/439/1/012038/pdf DOI : 10.1088/1742-6596/439/1/012038 |
|
来源: IOP | |
【 摘 要 】
Remote sensing is a major source of mapping the burned area caused by forest fire. The focus in this application is to map a single class of interest, i.e. burned area. In this study, three different data combinations were classified using different classifiers and quantitatively compared. The adopted classifiers are Support Vector Data Description (SVDD), a one-class classifier, Binary classifier Support Vector Machines (SVMs) and traditional Maximum Likelihood classifier (ML). At first, the Principal Component Analysis (PCA) was applied to extract the best possible features form the original multispectral image (OMI) and calculated spectral indices (SI). Then the resulting subset of features was applied to the classifiers. The comparative study has undertaken to find firstly, the best possible set of features (data combination) and secondly, an effective classifier to map the burned areas. The best possible set of features was attained by data combination- II (i.e., OMI information). Furthermore, the results of the SVM showed the high classification accuracies than ML. Experimental results demonstrate that even though the SVDD for mapping the burned areas doesn't showed the higher classification accuracy than SVM, but it shows the suitability for the cases with few or poorly represented labelled samples available. The parameters should be further optimized through the use of intelligent training for improving the accuracy of SVDD.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
Comparative analysis of mapping burned areas from landsat TM images | 4207KB | download |