会议论文详细信息
Padjadjaran Earth Dialogues, International Symposium on Geophysical Issues
Rock physics model to determine the geophysical pore-type characterization and geological implication in carbonate reservoir rock
Handoyo^1 ; Fatkhan^2 ; Hutami, Harnanti Yogaputri^1 ; Sudarsana, Rizki^3
Geophysical Engineering, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Way Hui, Jati Agung, Kabupaten Lampung Selatan
35365, Indonesia^1
Geophysical Engineering, Institut Teknologi Bandung, Jalan Ganesha No.10, Lb. Siliwangi, Coblong, Kota Bandung
40132, Indonesia^2
Geophysics, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang
45363, Indonesia^3
关键词: Carbonate reservoir;    Chemical materials;    Differential compaction;    Differential effective mediums;    Geological conditions;    Geological process;    Rock physics model;    Seismic wave velocity;   
Others  :  https://iopscience.iop.org/article/10.1088/1755-1315/311/1/012031/pdf
DOI  :  10.1088/1755-1315/311/1/012031
来源: IOP
PDF
【 摘 要 】

The pore geometry of carbonate reservoir consists of such heterogeneous, complex, variation types of pore structure and high chemical material reactivity. Rock physics modeling is applied in this study as it is an accurate, precise and practical method for the case of carbonate reservoirs. It is examined to determine the effect of carbonate reservoir geometry on the seismic wave velocity in carbonate field using fast DEM (Differential Effective Medium) model. We integrate measured logs and petrophysics data from gas-saturated carbonate reservoir. The results show that majority of pore geometry in the research area are interparticle pores and micro-cracks pores. The pore geometry interprets the effects of seismic wave velocity of carbonate reservoir in the study area, stiff pores or the increasing of α values will make the seismic wave velocity to increase rapidly and crack pores or the decreasing of α values will make the seismic wave velocity slower. Generally, we have worked in the common geological condition of carbonate reservoir rocks. In terms of aspect ratio value, our reservoirs controlled by overburden geological process. This indicated that fracturing is closely related to overburden and differential compaction, thus increasing the connection between separate vugs and enhancing permeability dramatically.

【 预 览 】
附件列表
Files Size Format View
Rock physics model to determine the geophysical pore-type characterization and geological implication in carbonate reservoir rock 1260KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:25次