会议论文详细信息
International science and technology conference "Earth science"
Automatic Evaluation of Pavement Thickness in GPR Data with Artificial Neural Networks
Sukhobok, Y.A.^1 ; Verkhovtsev, L.R.^1 ; Ponomarchuk, Y.V.^1
Far Eastern State Transport University, Department of Computer Engineering and Computer Graphics, 47 Seryshev St., Khabarovsk
680021, Russia^1
关键词: Automatic data processing;    Automatic evaluation;    Automatic selection;    Ground penetrating radar (GPR);    Machine learning techniques;    Multi layer perceptron;    Nondestructive methods;    Pavement thickness;   
Others  :  https://iopscience.iop.org/article/10.1088/1755-1315/272/2/022202/pdf
DOI  :  10.1088/1755-1315/272/2/022202
来源: IOP
PDF
【 摘 要 】

The ground penetrating radar (GPR) is one of the most frequently recommended non-destructive methods for the pavement thickness measurement. Due to the rapid growth of GPR data in the recent years, the development of automatic data processing techniques is required. In this paper we propose to use one type of artificial neural network, the multilayer perceptron (MLP), for automatic selection of the pavement boundaries. The experimental results indicate that machine learning techniques can be used for robust road structure evaluation.

【 预 览 】
附件列表
Files Size Format View
Automatic Evaluation of Pavement Thickness in GPR Data with Artificial Neural Networks 828KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:29次