会议论文详细信息
2018 4th International Conference on Environmental Science and Material Application
Improved Parameter Uniform Priors in Bayesian Network Structure Learning
生态环境科学;材料科学
Wang, Manxi^1 ; Wang, Liandong^1 ; Wang, Zidong^2 ; Gao, Xiaoguang^2 ; Di, Ruohai^2
State Key Lab. of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang
471000, China^1
Northwestern Polytechnical University, Xi'an
710000, China^2
关键词: Bayesian network structure;    Bayesian structure learning;    Data size;    Dirichlet;    Hyperparameters;    Information entropy;    Prior parameter distribution;    Sparse data;   
Others  :  https://iopscience.iop.org/article/10.1088/1755-1315/252/4/042099/pdf
DOI  :  10.1088/1755-1315/252/4/042099
来源: IOP
PDF
【 摘 要 】

Bayesian Dirichlet equivalent uniform score (BDeu) is often used in Bayesian structure learning. But it does not work well when data size is sparse because the equivalence of the prior parameter distribution isn't suit for the specific data set. To break the rules of uniform and equivalent, the paper proposes the Bayesian Dirichlet Sparse score (BDs) which change distribution of prior parameter through the all zero items in the sparse data. The circulation principle of information entropy and simulations are used to explain the reason why BDs is better than BDeu when data size is sparse. In the experiments, we also verify the stability of BDs when hyperparameters change.

【 预 览 】
附件列表
Files Size Format View
Improved Parameter Uniform Priors in Bayesian Network Structure Learning 239KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:30次