2019 2nd International Conference on Advanced Materials, Intelligent Manufacturing and Automation | |
Composite reduced-kernel weighted extreme learning machine for imbalanced data classification | |
Wang, Dafei^1 ; Xie, Wujie^1 ; Dong, Wenhan^1 | |
Aeronautics Engineering College, Air Force Engineering University, Xi'an, Shanxi | |
710038, China^1 | |
关键词: Binary classification; Classification performance; Composite kernel method; Computational costs; Extreme learning machine; Imbalanced Data-sets; Polynomial kernels; Sample distributions; | |
Others : https://iopscience.iop.org/article/10.1088/1757-899X/569/5/052108/pdf DOI : 10.1088/1757-899X/569/5/052108 |
|
来源: IOP | |
【 摘 要 】
In order to solving the problem that the weighted extreme learning machine based on the ensemble learning method enhances the classification performance while increasing the running time of the algorithm, starting from the perspective of multi-core learning, a weighted extreme learning machine based on composite kernel functions and reduced-kernel technique is proposed. The composite kernel function based on Gaussian kernel and Polynomial kernel weighted combination is designed, which effectively improves the classification performance of weighted extreme learning machine. Meanwhile, based on the sample distribution characteristics of the imbalanced dataset, the balanced input sub-matrix is designed to reduce the computational cost of the composite kernel method. The eight binary classification imbalanced datasets of KEEL dataset repository were used for testing. The experimental results show that compared with the original weighted extreme learning machine algorithm, the G- mean and AUC classification performance indicators of the composite reduced-kernel weighted extreme learning machine algorithm are improved in each dataset, and the computation cost is effectively reduced.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
Composite reduced-kernel weighted extreme learning machine for imbalanced data classification | 524KB | download |