会议论文详细信息
Functional Materials and Nanotechnologies 2018
Optimization of the enzyme power source for a nano drug delivery system fuelled by glucose in blood plasma
Naidoo, S.^1 ; Thage, L.^1 ; Ying, Q.^2 ; Vallie, S.^1 ; Vaivars, G.^3
University of Stellenbosch, South Africa^1
University of Cape Town, South Africa^2
Institute of Solid State Physics, Department of Chemistry, University of Latvia, Latvia^3
关键词: Biological catalysts;    Drug delivery system;    Experimental application;    Experimental modeling;    Glucose oxidases (GOx);    Membrane electrode assemblies;    Membrane permeability;    Proton-exchange membrane;   
Others  :  https://iopscience.iop.org/article/10.1088/1757-899X/503/1/012026/pdf
DOI  :  10.1088/1757-899X/503/1/012026
来源: IOP
PDF
【 摘 要 】

A unique in vivo electrical pulse generator to improve membrane permeability for drugs and simultaneously facilitate self-powered nano devices for nano drug delivery systems (NDDS) was identified. The use of an unsupported biological catalyst component of the power supply was aimed at the NDDS instead of a conventional membrane electrode assembly (MEA). Self-powered carriers of drugs and prodrugs with improved controlled release capability to target areas using substrate available in biological matrices such as glucose in blood is envisaged. The experimental application implemented prototype designed chambers allowing the entry of premixed precursors and low ohm resistance due the absence of diffusion layers and optimised open circuit voltage (OCV). This would also minimise poisoning and rupturing of the proton exchange membrane (PEM). The model uses the isothermal experimental design (37°C) parameter and the glucose is partly oxidised prior to entry and mostly oxidised at the surface of the proton exchange membrane (PEM). The experimental model used a residence time instead of the usual flow rate. The power was notably high for short periods due to the absence of carbon supported diffusion layers. The findings included low levels of glucose and glucose oxidase (GOx) are needed for OCV optimisation.

【 预 览 】
附件列表
Files Size Format View
Optimization of the enzyme power source for a nano drug delivery system fuelled by glucose in blood plasma 841KB PDF download
  文献评价指标  
  下载次数:23次 浏览次数:32次