会议论文详细信息
1st International Workshop on Sentiment Discovery from Affective Data (SDAD 2012)
Feature Weighting Strategies in Sentiment Analysis
Olena Kummer ; Jacques Savoy
Others  :  http://ceur-ws.org/Vol-917/SDAD2012_5_Kummer.pdf
PID  :  43176
来源: CEUR
PDF
【 摘 要 】

In this paper we propose an adaptation of the Kullback-Leibler divergence score for the task of sentiment and opinion classification on a sentence level. We propose to use the obtained score with the SVM model using different thresholds for pruning the feature set. We argue that the pruning of the feature set for the task of sentiment analysis (SA) may be detrimental to classifiers performance on short text. As an alternative approach, we consider a simple additive scheme that takes into account all of the features. Accuracy rates over 10 fold cross-validation indicate that the latter approach outperforms the SVM classification scheme.

【 预 览 】
附件列表
Files Size Format View
Feature Weighting Strategies in Sentiment Analysis 115KB PDF download
  文献评价指标  
  下载次数:32次 浏览次数:29次