会议论文详细信息
Complexity of Boolean Functions
Approximability of Minimum AND-Circuits
计算机科学;物理学;物理学
Jan Arpe∗ ; 1 Bodo Manthey† ; 2 ; 2 Universita¨t des Saarlandes Informatik Postfach 151150 66041 Saarbru¨cken ; Germany
Others  :  http://drops.dagstuhl.de/opus/volltexte/2006/603/pdf/06111.ArpeJan.Paper.603.pdf
PID  :  6446
学科分类:计算机科学(综合)
来源: CEUR
PDF
【 摘 要 】

Given a set of monomials, the Minimum AND-Circuit problem asks for a circuit that computes these monomials using AND-gates of fan-in two and being of minimum size. We prove that the problem is not polynomial time approximable within a factor of less than 1.0051 unless P = NP, even if the monomials are restricted to be of degree at most three. For the latter case, we devise several efficient approximation algorithms, yielding an approximation ratio of 1.278. For the general problem, we achieve an approximation ratio of d− 3/2, where d is the degree of the largest monomial. In addition, we prove that the problem is fixed parameter tractable with the number of monomials as parameter. Finally, we reveal connections between the Minimum AND-

【 预 览 】
附件列表
Files Size Format View
Approximability of Minimum AND-Circuits 330KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:13次