会议论文详细信息
Multi-Version Program Analysis
Weighted L_2 B Discrepancy and Approximation of Integrals over Reproducing Kernel Hilbert Spaces
计算机科学;物理学
Michael Gnewuch
Others  :  http://drops.dagstuhl.de/opus/volltexte/2009/2296/pdf/09391.GnewuchMichael.Paper.2296.pdf
PID  :  6409
学科分类:计算机科学(综合)
来源: CEUR
PDF
【 摘 要 】

We extend the notion of L_2 B discrepancy provided in [E. Novak, H. Woz´niakowski, L_2 discrepancy and multivariate integration, in: Analytic number theory. Essays in honour of Klaus Roth. W. W. L. Chen, W. T. Gowers, H. Halberstam, W. M. Schmidt, and R. C. Vaughan (Eds.), Cambridge University Press, Cambridge, 2009, 359 – 388] to the weighted L_2 B discrepancy. This newly defined notion allows to consider weights, but also volume measures different from the Lebesgue measure and classes of test sets different from measurable subsets of some Euclidean space. We relate the weighted L_2 B discrepancy to numerical integration defined over weighted reproducing kernel Hilbert spaces and settle in this way an open problem posed by Novak and Wo´zniakowski.

【 预 览 】
附件列表
Files Size Format View
Weighted L_2 B Discrepancy and Approximation of Integrals over Reproducing Kernel Hilbert Spaces 177KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:2次