会议论文详细信息
13th International Conference on Artificial Intelligence and Statistics
Dirichlet Process Mixtures of Generalized Linear Models
计算机科学;数学科学
Lauren A. Hannah David M. Blei Warren B. Powell
PID  :  119783
来源: CEUR
PDF
【 摘 要 】

We propose Dirichlet Process mixtures of Generalized Linear Models (DPGLMs), a new method of nonparametric regression that accommodates continuous and categorical in puts, models a response variable locally by a generalized linear model. We give conditions for the existence and asymptotic unbiased ness of the DPGLM regression mean func tion estimate; we then give a practical ex ample for when those conditions hold. We evaluate DPGLM on several data sets, com paring it to modern methods of nonparamet ric regression including regression trees and

【 预 览 】
附件列表
Files Size Format View
Dirichlet Process Mixtures of Generalized Linear Models 1258KB PDF download
  文献评价指标  
  下载次数:55次 浏览次数:27次